While the first functional battery was developed in the year 1800 by Italian physicist Alessandro Volta, a practical battery would not be seen for several decades yet. By the end of the 19th century, practical and portable batteries were more widely available, this finally freeing the electric motor to be used in a wide new array of applications. It might come as a surprise, but the electric motor, battery, and a bicycle were first paired as far back as the 1890s. It would be approximately 100 years later that electric bicycle development finally entered the mainstream, but the technology and concept behind the electric bike were all in place generations ago.
The time or distance an electric bike battery will run between chargings is impossible to judge with much accuracy. There are too many variables: terrain, speed, rider weight, bike load (shopping, kids, luggage), and more. However, we can make a few generalizations about an e-bike’s recharge time and overall working life. These generalizations should be used for comparison purposes only.

Brock had been running his esoteric shop on Cambie St. for over 30 years, pioneering the sale and production of recumbent bikes, tricycles, velomobiles, unicycles, and of course electric bicycles well before any of these things were popular. He was dabbling with early ebike conversions in the 1990's when we were still in grade school and has been for many years one of the few shops always willing to say yes to electric retrofits. We hope to still see him riding around streets of Vancouver in a white velomobile. 
Most consumers want an e-bike that will accommodate its motor without being too cumbersome and will remain stable in spite of its electronic components. Some consumers want only the most basic of e-bike features, including lights, a cargo rack/basket, and a water bottle holder. Others are focused more heavily on safety features, such as brake type. And still others are concerned with convenience and portability.
The oldest patent for an electric bike I've been able to find at the US Patent and Trademark Office is this one, by Ogden Bolton, Jr. of Canton Ohio, which was filed in September 1895 and granted three months later. You can see from these original diagrams that it bears an amazingly close resemblance to modern electric bikes. In the general picture on the left, you can see there's a hub motor on the rear wheel (blue), a battery suspended from the frame (red), and a simple handlebar control to make the thing stop and go. In the more detailed cutaway of the hub motor on the right, you can see there's a six-pole magnet in the center (orange) bolted to the frame and an armature (made from coiled wire, yellow) that rotates around it when the current is switched on. It's quite a hefty motor even by modern standards; Ogdon mentions "a heavy current at low voltage—for instance, to carry one hundred amperes at ten volts." So that's 1000 watts, which is about twice the power of a typical modern bike hub motor.
Photo: Zap Electric's power-assist kit turns a conventional bike into an electric one. There's a bolt-on DC electric motor (weighing just over 3kg or 7lb) just above the back wheel, behind the police officer's foot, pressing against the tire and driving it by simple friction. The motor's powered by a compact lead-acid battery (weighing about 5.5 kg or 12 lb) inside a protective nylon bag. This kit adds quite bit of weight to the bike, but gives extra range and speed when needed. Photo taken in Santa Rosa, California by Rick Tang courtesy of US DOE/NREL.

To qualify as an electric-assisted bicycle under state law they need to have a seat and fully operable pedals for human propulsion, meet federal motor vehicle safety standards, an electric motor that has a power output of not more than 1,000 watts, maximum speed of not more than 20 mph (electric motor and human power combined), disengages or ceases to function when the vehicle’s brakes are applied, two or three wheels
×