In Quebec power-assisted bicycles are often classified similarly to standard pedal bicycles. They do not have to meet the conditions defined within the Canadian Motor Vehicle Safety Regulations (they are not classed as "motor vehicles"), but they do have to comply with federal regulations that define Power Assisted Bicycles. The Quebec Highway Safety Code defines a power-assisted bicycle as a bicycle with an electric motor. PABs are permitted on the road in the province of Quebec.

The frame of an electric bike also has to be slightly different. The main part of the frame (the bit that supports your weight) is usually made from lightweight aluminum alloy: the lighter the frame, the lighter the weight of the bike overall, and the further it can travel before you need to recharge the batteries. The spokes on the wheel also have to be stronger than the thin spokes on a traditional bicycle. That's because the electric motor in the hub spins the wheel with a lot of turning force (known as torque) and, if the spokes were ordinary lightweight ones, they could bend or buckle.

Let’s face it – Commuting can be a nightmare. Seemingly infinite price hikes, delays to trains, crammed tubes and congested roads dominate the ways of getting to work. The commuter misery is real. But, what if you could transform this part of the day from a chore to a pleasure? Enter the eBike. The clean, … Continue reading Why an eBike is so good for commuting
None of this would matter if the VanMoof Electrified S2 (and its close relative the X2) wasn't fun to ride, but it is a blast. Like the Brompton, it pulls off the neat trick of powering you along but giving the illusion that you're doing the work, reacting quickly and cleverly to the speed of your pedalling and the difficulty of any incline you're on. 
Photo: Left: The hub motor of an electric bike. Right: If you took off the casing, this is the kind of thing you'd see. It's a simple brushless motor from a PC cooling fan, but it works in broadly the same way as a bike's hub motor. There's a static part made up of four electromagnet coils (left) and a rotating part (right) made from a permanent magnet (the gray ring) that clips onto it. When the coils are energized in sequence, they generate a magnetic field that makes the permanent magnet and fan spin around. At a glance, a hub motor looks much like an ordinary bicycle hub, but look closer and you'll find it's a lot more bulky.
Maryland defines an "electric bicycle" as a vehicle that (1) is designed to be operated by human power with the assistance of an electric motor, (2) is equipped with fully operable pedals, (3) has two or three wheels, (4) has a motor with a rating of 500 watts or less, (5) and is capable of a maximum speed of 20 miles per hour on a level surface when powered by the motor. (Senate Bill 379, approved by the Governor 5/5/2014, Chapter 294.) [96] This legislation excludes "electric bicycle" from the definition of "moped", "motorized minibike", and "motor vehicle", and removes the titling and insurance requirements required for electric bicycles under prior Maryland law.
A 2008 market survey showed that the average distance traveled in the Netherlands by commuters on a standard bicycle is 6.3 kilometres (3.9 mi) while with an e-bike this distance increases to 9.8 kilometres (6.1 mi).[79] This survey also showed that e-bike ownership is particularly popular among people aged 65 and over, but limited among commuters. The e-bike is used in particular for recreational bicycle trips, shopping and errands.[79]
Stöckli E.T. Urban Confort, made in Switzerland. It has SwissGoDrive motors and Samsung batteries. There is a 500W/17.6Ah combo that seems to be ideal for commuters, i.e. it has a 50km range using full assistance. In the USA, a similar product is available as Currie eFlow e3 Nitro (different motor and electronics). This model doesn't have a front wheel suspension, but comes with "balloon" tires that somewhat absorb shocks. Options are available through types: "simple"/Urban/CROSS and man/confort models. E.g. the Cross model has a front suspension, a 500W motor and no equipment like lights, fenders, etc. However, paying extra, you can compose your own configuration. If you commute using bumpy roads, then get a front suspension.
The U.S. Consumer Product Safety Act states that electric bicycles and tricycles meeting the definition of low-speed electric bicycles will be considered consumer products. The Consumer Product Safety Commission (CPSC) has regulatory authority to assure, through guidelines and standards, that the public will be protected from unreasonable risks of injury or death associated with the use of electric bicycles.[61][62]
While the first functional battery was developed in the year 1800 by Italian physicist Alessandro Volta, a practical battery would not be seen for several decades yet. By the end of the 19th century, practical and portable batteries were more widely available, this finally freeing the electric motor to be used in a wide new array of applications. It might come as a surprise, but the electric motor, battery, and a bicycle were first paired as far back as the 1890s. It would be approximately 100 years later that electric bicycle development finally entered the mainstream, but the technology and concept behind the electric bike were all in place generations ago.
This upgraded model is the best scooter of this type that is currently available on the market. I have permanent mobility issues because of my left leg that do not allow me to walk any long distances. This scooter is allowing me to finally get out of the house to see and do some things again, even if that is just cruising around the neighborhood, but my main reason for purchasing it was so that I can go watch my granddaughters playing softball this spring, they are quite good.
Operators are subject to driving rules and equipment requirements (if applicable) when operated on the public streets or highways (which includes the main traveled portion of the road, shoulder and sidewalk). This means that an operator could be cited for speeding, failure to signal, unsafe change of course, driving on the sidewalk, DWI (this would apply to anywhere in the state and not just the streets/highways), and all other driving rules contained within state law that would apply. They may also not ride more than two abreast and may not impede the normal and reasonable movement of traffic. On a laned roadway, they must operate within a single lane.[citation needed]
UPDATE (2019-03-15): I've now got more than 110 miles on the bike and still loving it. The longest ride I did was 28.5 miles and the display was still showing about two bars left on the battery. But the battery gauge is not accurate. Even when it went down to two bars it would also jump back up to 4 bars and stay that way for awhile. So it's really hard to tell how much power you have left. On one ride, after 14 miles the pedal assist stopped working all of a sudden. I stopped and re-seated the cadence sensor and it started working again. Even when PAS didn't work the throttle was still working. It hasn't happened since. There was also a lot of rattling noises which I found was the battery rattling around in the mounting bracket.
China has experienced an explosive growth of sales of non-assisted e-bikes including scooter type, with annual sales jumping from 56,000 units in 1998 to over 21 million in 2008,[72] and reaching an estimated fleet of 120 million e-bikes in early 2010.[2][73] This boom was triggered by Chinese local governments' efforts to restrict motorcycles in city centers to avoid traffic disruption and accidents. By late 2009 motorcycles are banned or restricted in over ninety major Chinese cities.[72] Users began replacing traditional bicycles and motorcycles and e-bike became an alternative to commuting by car.[2] Nevertheless, road safety concerns continue as around 2,500 e-bike related deaths were registered in 2007.[73] By late 2009 ten cities had also banned or imposed restrictions on e-bikes on the same grounds as motorcycles. Among these cities were Guangzhou, Shenzhen, Changsha, Foshan, Changzhou, and Dongguang.[72][73]
Nevada Electric Bicycle (NRS 482.0287) Bicycle 20 (motor only on the flat with 170LB rider, undefined if pedal assist is allowed to go faster) 750W (it is undefined as to whether this is input or output power, but in the USA, motors are rated on output power at the shaft) No none (use caution here because of "reckless endangerment" laws) no (not a "motor vehicle")
There is however still confusion over the various legislations involving Electric Bicycles. This stems from the fact that while places like the US and Canada offer some Federal regulation, the legality of road use is left to the various States or Provinces and then complicated further by municipal laws and restrictions. Further more there are a range of classifications and terms describing them, "Power-assisted bicycle" (Canada) or "Power assisted cycle" (United Kingdom) or ”Electric pedal assisted cycles” (European Union) or simply "electric bicycles", and as such in some cases have varying laws according to their respective classifications in some places.
Depending on local laws, many e-bikes (e.g., pedelecs) are legally classified as bicycles rather than mopeds or motorcycles. This exempts them from the more stringent laws regarding the certification and operation of more powerful two-wheelers which are often classed as electric motorcycles. E-bikes can also be defined separately and treated under distinct Electric bicycle laws.
Under Title 23, Chapter 316 of the code, bicycles and motorized bicycles are defined as follows: Bicycle—Every vehicle propelled solely by human power, and every motorized bicycle propelled by a combination of human power and an electric helper motor capable of propelling the vehicle at a speed of not more than 20 miles per hour on level ground upon which any person may ride, having two tandem wheels, and including any device generally recognized as a bicycle though equipped with two front or two rear wheels. The term does not include such a vehicle with a seat height of no more than 25 inches from the ground when the seat is adjusted to its highest position or a scooter or similar device. No person under the age of 16 may operate or ride upon a motorized bicycle. Motorized Scooter—Any vehicle not having a seat or saddle for the use of the rider, designed to travel on not more than three wheels, and not capable of propelling the vehicle at a speed greater than 30 miles per hour on level ground.[90]
So first off, it isn’t fair to compare the power of a Chinese rear hub motor watt for watt with a 250W Bosch or Brose or even a Shimano or Yamaha mid-drive motor. There just isn’t even close to the amount of torque or power on a per watt basis and that’s before we get to controllers. However, comparing the Rattan’s 350W motor to the Ancheer’s 250W motor seems more proportionally correct. Where as I could make it about a third of the way up my driveway hill from a cold start on Ancheer throttle, I made it about 2/3rds of the way with the Rattan, or another 100 feet. On a flat surface, again with throttle only, I hit 20 mph in about 10 seconds with the Rattan. It takes me another 5+ seconds to get there on the Ancheer. One note, the battery gauge does bounce around a bit depending on how much it is working. At full throttle you might lose a bar or 2 only to get it back once you coast.

In addition to this, however, you’re going to want to invest in additional safety gear if you don’t want to end up as a statistic. This must include a helmet, as your skull is incredibly vulnerable when moving along at biking speeds. There are even some helmets that have lights and turn signals integrated into their design, giving you greater visibility for drivers.

If you are an experienced rider this is actually annoying as hell. Personally, I tend to leave whatever I'm riding in a high gear all the time, because my body is like a powerful machine, and I found the way it slowed my escape from the lights quite disconcerting. For beginners, it could be useful, but it's worth remembering that the whole point of e-bikes is that the motor helps you along anyway, so I do really question the usefulness of this.
Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the widespread advertising, production, and use of these devices.[9] More than 1 billion bicycles have been manufactured worldwide as of the early 21st century.[1][2][3] Bicycles are the most common vehicle of any kind in the world, and the most numerous model of any kind of vehicle, whether human-powered or motor vehicle, is the Chinese Flying Pigeon, with numbers exceeding 500 million.[1] The next most numerous vehicle, the Honda Super Cub motorcycle, has more than 60 million units made, while most produced car, the Toyota Corolla, has reached 35 million and counting.[4][5][6][32]
Experiments done in Uganda, Tanzania, and Sri Lanka on hundreds of households have shown that a bicycle can increase a poor family's income as much as 35%.[69][better source needed][70][71] Transport, if analyzed for the cost-benefit analysis for rural poverty alleviation, has given one of the best returns in this regard. For example, road investments in India were a staggering 3–10 times more effective than almost all other investments and subsidies in rural economy in the decade of the 1990s. What a road does at a macro level to increase transport, the bicycle supports at the micro level. The bicycle, in that sense, can be an important poverty-eradication tool in poor nations.
A human traveling on a bicycle at low to medium speeds of around 16–24 km/h (10–15 mph) uses only the power required to walk. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. If the rider is sitting upright, the rider's body creates about 75% of the total drag of the bicycle/rider combination. Drag can be reduced by seating the rider in a more aerodynamically streamlined position. Drag can also be reduced by covering the bicycle with an aerodynamic fairing. The fastest recorded unpaced speed on a flat surface is 144.18 km/h (89.59 mph)[41]

The first functioning electric motor was displayed in the early 19th century, though the device constructed by British scientist Michael Faraday did little more than swirl a wire around a magnet when an electric charge was introduced. Still, the concept proved that electricity could do work. Functional electric motors would follow in many forms after that achievement in 1821. Soon scientists and tinkerers around the world, including visionaries such as Nikola Tesla, were experimenting with all manner of electric motors -- some worked with DC power, others with AC. By the end of the century, myriad electric motors had been produced, capable of exerting enough force with enough reliable control that they were practical for use in myriad applications.

None of this would matter if the VanMoof Electrified S2 (and its close relative the X2) wasn't fun to ride, but it is a blast. Like the Brompton, it pulls off the neat trick of powering you along but giving the illusion that you're doing the work, reacting quickly and cleverly to the speed of your pedalling and the difficulty of any incline you're on. 
You are not allowed to drive S-Pedelecs in France even if they are registered legally in your country (e.g. Germany or Switzerland). In other words, if you plan to take your 45h bike that is legal in your country on vacation in another where it is not, you may violate traffic law. Remove the license plate or don't do it. People who commute between countries, are known to hack removable plates with magnets ...

J. K. Starley's company became the Rover Cycle Company Ltd. in the late 1890s, and then simply the Rover Company when it started making cars. Morris Motors Limited (in Oxford) and Škoda also began in the bicycle business, as did the Wright brothers.[101] Alistair Craig, whose company eventually emerged to become the engine manufacturers Ailsa Craig, also started from manufacturing bicycles, in Glasgow in March 1885.